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Abstract—Cooperative behavior algorithms utilizing swarm 
intelligence are being developed for mobile sensor 
platforms to inspect jet engines on-wing.  Experiments are 
planned in which several relatively simple autonomous 
platforms will work together in a coordinated fashion to 
carry out complex maintenance-type tasks within the 
constrained working environment modeled on the interior of 
a turbofan engine.  The algorithms will emphasize 
distribution of the tasks among multiple units; they will be 
scalable and flexible so that units may be added in the 
future; and will be designed to operate on an individual unit 
level to produce the desired global effect.  This proof of 
concept demonstration will validate the algorithms and 
provide justification for further miniaturization and 
specialization of the hardware toward the true application 
of on-wing in situ turbine engine maintenance. 
 
 

1. INTRODUCTION 
 
Modern jet engines undergo regular maintenance 
inspections for the purpose of detecting evidence of internal 
distress such as cracking or erosion. The inspection methods 
range from the minimally invasive borescopic to those 
requiring full teardown.  Borescopic inspections, which 
consist of an interior visual inspection using a flexible tool 
inserted through a view port, are performed on-wing, 
resulting in little downtime.  Full teardowns, on the other 
hand, result in much lost on-wing time and significant cost 
to the operator, but they do allow for more thorough 
inspections simply because the maintainer has better access 
to the internal components, and teardowns are often required 
for repair or replacement of worn or damaged parts. 

It is highly desirable to reduce the requirement for 
teardowns, but at the same time it is unacceptable to 
compromise safety.  If much of the inspection and repair 
that currently requires teardown could be performed on-
wing, it would be a boon to the airline industry, from the 
point of view of both early detection of potential problems 
and lower maintenance costs.  
 

  
Miniature mobile sensor platforms that can roam the 
surfaces inside of an engine while it is shut down may be 
able to perform such a maintenance function.  Through their 
ability to move about freely and autonomously in confined 
spaces and perceive and communicate information, they can 
thoroughly search all exposed surface areas for damage or 
wear.  Subsequently, they can redirect themselves to 
problem areas, potentially providing a repair.  Combining 
many such miniature mobile sensor platforms into a 
collaborative multi-agent system may enable the inspection 
and repair of jet engines, thus replacing some of the human 
intervention currently required in the maintenance cycle. 
(Figure 1). 
                                                 
   KIMAS’03 Paper Number 3.6.2 

 

Figure 1. Artist's conception of mobile maintenance 
platforms inspecting jet engine. 
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Work is ongoing at NASA Glenn Research Center and 
university partner California Institute of Technology to 
develop the underlying technology to enable the realization 
of such a system.  It is envisioned that a collaborative 
swarm of these mobile agents will rove through an engine in 
a highly coordinated fashion, thoroughly searching engine 
surfaces to assess damage.  Once damage is detected, the 
location and damage type information will be disseminated, 
possibly alerting the appropriate group of agents to 
converge and perform the necessary repairs. 
 
Due to the tiny size of these agents, it is likely that they will 
only contain simple on-board intelligence. As a result, each 
individual will only be imbued with the ability to follow 
simple behavioral controls. However, it is envisioned that 
the combined interaction of the individual units will result 
in the emergence of a complex group behavior that assures a 
thorough and methodical search for damage.  
 
The current work entails developing the technology to 
implement a small scale arena demonstration that tests the 
feasibility of a cooperative multi-agent inspection system. 
After providing some application background, this paper 
will discuss the two primary technology areas being 
developed in parallel: the hardware implementation of 
prototype mobile sensor platforms and the application of 
collaborative control algorithms.  The hardware discussion 
will describe the development and evolution of the 
prototype mobile sensor platforms.  The controls discussion 
will describe the application of Swarm Intelligence based 
algorithms to enable a group of mobile sensor platforms to 
accomplish coordinated movement, efficient searches and 
collaborative goal achievement within the demonstration 
environment.  In addition, the demonstration tests that will 
be used to validate the swarm algorithms will be described 
(Figure 2). 

2. APPLICATION BACKGROUND 
 
The types of engine inspection that can be performed either 
visually or with specific sensors could be performed in situ, 
given the technology to deliver the test devices to the 
appropriate location within the engine.  Mobile sensor 
platforms designed to move within the confines of the 
engine provide hope that someday full engine inspections 
will be able to be performed on-wing.  The outcome of this 
program will be a proof of concept demonstration. 
 

2.1 NONDESTRUCTIVE TESTING METHODS 
 

Commonly used nondestructive engine component testing 
methods [1] include: Visual/Borescopic; Eddy Current; 
Ultrasonic; liquid penetrant; and magnetic particle.  Some 
other, less commonly used techniques include radiography; 
acoustic emission; thermography; holography; 
shearography; and tap testing.  Of all of these techniques, 
only the visual inspection is currently performed on-wing 
except in very specialized cases, the rest are bench tests.  
There has been a preliminary effort to try to transition some 
other techniques to on-wing [2] for improved safety, but the 
problems remain concerning the way to get the test 
equipment into the confined space to perform the inspection. 
 
Postage stamp size integrated sensor (or “lick and stick”) 
technology that may be attached directly to components to 
provide constant self-awareness of the engine’s health [3] is 
an alternative to the current system of after-the-fact 
inspection.  Generally manufacturers are unwilling to add 
sensors to engines without very good reason because they 
are perceived as adding cost and complexity while reducing 
reliability.  The mobile sensor platforms offer a link 
between the current system and the integrated sensor 
approach because they provide some of the same component 
health monitoring capabilities while overcoming many of 
the issues that create the reluctance to add sensors.  They are 
temporary and removable so sensor failures do not result in 
down time of the engine, they are reusable so a different set 
is not needed for each engine, and they do not require the 
engine to be modified. 
 
With the motivation to move as much testing as possible to 
the wing-mounted engine, mobile sensor platforms provide 
a way to deliver the sensors and perform tests like those 
currently performed in the shop.  Thus some of the current 
bench test techniques can be directly duplicated by the 
mobile sensor platforms, while others might be replaced by 
an equivalent test using new technology. 
 

2.2 REPAIR METHODS 
 

Some of the standard engine component repair methods 
include: boring, grinding, blending, welding, plating, 

 

Figure 2. Preliminary simulation of agents flocking 
to a crack in a jet engine. 
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painting, coating, straightening, etc. [4].  The problems and 
logistics associated with making these repairs in situ are far 
greater than those that arise with the inspections (dust and 
residue generation, extreme heat, etc.), but it is still quite 
conceivable that some of the less harsh techniques might 
someday be developed to such a level that they are safe to 
perform within the engine. 
 

3. MOBILE SENSOR PLATFORM  DESCRIPTION 
 
The mobile sensor platforms used here have developed from 
a general archetype, whose descendants have evolved and 
shrunk with each generation, but all contain the same 
characteristics of on-board power, communication 
capability, video output, and a sensor payload bay [5].  The 
original intention was to create a platform which could be 
sent into non-human safe/accessible areas and to transmit 
back video, sound and other sensed variables.  As the 
incarnations progressed, the platforms shrunk yet gained 
communications capabilities.  For example, the original 
platform received command and control and returned video.  
The latest platform can also return sensor data along with 
video and can network with other platforms.   This being the 
case, the present effort has the volume in its sensor bay for a 
video camera and in its battery bay, a cell sufficient to 
power the camera and the motor drives.  This configuration 
is considered to be the upper end of the sensor power and 
volume budget.  Thus, any other sensor ensemble, for 
example microphones, electronic noses, pressure 
transducers, etc. can be expected to fall within the power 
budget of the platform and volume of the camera bay and so 
would require minimal if any modification. These units have 
been designed as general purpose vehicles, for such possible 
uses as planetary exploration and astronaut-to-equipment 
communication.  They have not been optimized for the 
engine inspection application in terms of size-limiting 
components and as such are useful through the proof of 
concept phase but not beyond.  Less reliance on 
commercial, off-the-shelf hardware and more custom design 
and machining of parts would allow for a more appropriate 
product for the application, but at the cost of significant time 
and money, which is only justified by the decision to move 
on to a real implementation. 
 
As previously stated, the mobile sensor platforms carry their 
own power, but sometimes the application dictates that more 
power is required than a battery can supply, forcing the use 
of an external power source and a tether [6].  This situation 
might be exacerbated by the requirement for stronger 
motors to drag the trailing cable.  The question of whether 
or not the mobile platforms should be tethered arises for two 
distinct reasons.  Miniaturization is a requirement for 
movement within an engine.  Blade spacing might be half an 
inch or less with the added complication of a camber (turn) 
to maneuver through.  Clearances at the blade tips on the 
order of mils make an overhead examination impossible.  
Thus the length of the platform is limited if it is required to 

move between stages of the compressor or turbine (Figure 
3).  With current technology and the in-house design 
requirements, the platforms’ size is constrained by the size 
of the power supply or battery, which presently is an ICR2 
photo cell (Figure 4).  Thus, at least for the near future, an 
external power supply with a cable connection is required if 
the platform is to reach the necessary size (Figure 5). 
 

 
 

 
 
The other requirement for tethering is potentially a 
regulatory one.  Allowing foreign objects inside an engine 
poses a risk of damage.  Parts and equipment inadvertently 
left in or near an engine have caused foreign object damage 
(FOD) [7,8].  Abandoned roving robots within 
turbomachinery could also generate FOD as they are sucked 
through the engine at startup, and might even cause it to 
seize.  Foreign object damage caused by a single loose 
platform and the subsequent engine dismantling and repair 
could more than eradicate the savings generated by the 
mobile sensor platforms.  Tethering would provide an 
indication that  there are still  platforms  inside the engine as 

Figure 4. Prototype mobile sensor platform with on-
board power, video camera, temperature sensor and 
battery monitor. 

 
Figure 3. Cross section of a commercial turbofan 
engine. 
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well as how many, and would possibly provide a means to 
pull disabled platforms out, which could be accomplished 
using fishing line for the tether even with on-board power.  
It is likely that, for this application, adding a tether would 
mean adding an on-board reel to wind up the slack on exit 
as well. 
 

4. SWARM ALGORITHMS 
 

Swarm algorithms provide scalability of the control 
architecture, flexibility as units can be dynamically added or 
removed without explicit reorganization, and robustness 
through redundancy and simplicity of the units [9].  Thus 
they lend themselves very well to the jet engine inspection 
application because they support the validity of the small 
scale test bed demonstration with several similar mobile 
sensor platforms.  The specific issues associated with the 
application—the constrained environment with little 
maneuvering room and less passing room, yet the required 
collaboration in inspection and possibly repair—make 
formation control [10] essential to the success of the task, 
which relies on getting the right capabilities to a certain 
location within the engine [11].  Some initial experiments 
will focus on issues that are functions of the test bed and 
ultimately the environment within an engine: the types of 
communication required to perform the collaborative tasks 
[12], and the types and locations of sensors required for 
such communication [13] (this is separate from the question 
of which sensors are required for the actual component 
inspection, which is not part of this portion of the research).  
Additionally, as the tasks become defined in terms of what 
the true inspection procedure and possible repair will entail, 
the experiments will be designed to investigate such 
problems as exploration strategies guaranteeing 

completeness of coverage [14], division of labor and 
allocation of workers [15], group size [16], and 
specialization of agents [17], which is expected to be 
particularly important as in situ component testing methods 
are developed. 
 
The issue of tethering becomes very important in the second 
group of experiments.  Tethers add a great deal of structure 
to the problem because they create constraints that limit the 
freedom of movement of the agents and require additional 
path planning [18].  This structure works against the spirit 
of the swarm intelligence, but provides an opportunity to 
develop the path planning aspect of the technology. 
 
Another key issue is the need for an efficient representation 
of the engine surface.  Since the agents will have limited 
memory capacity, it might be unrealistic for each to carry 
with itself a map of the complex geometry of the engine.  
Additionally, since the swarm algorithms require each agent 
to have only local awareness, requiring knowledge of the 
entire engine layout puts an unreasonable burden on the 
agents.  However, the exit strategy, especially in the 
tethered case, will demand at least memory of the complete 
route taken to that point. 
 

5. PLANNED TEST BED DEMONSTRATION 
 

The goal of the project is to have several mobile platforms 
move around a 2-dimensional area that represents the inside 
of an engine (Figure 6).  Issues related to how the mobile 
sensor platforms will move around the cylindrical surface of 
a real engine without falling off will not be addressed at this 
stage.  Mobile sensor technology will not be addressed here 
either, even though that is the ultimate goal of the program.  
The purpose of the demonstration will be to evaluate the 
search and convergence algorithms as well as the 
communications protocol within the obstacle-filled arena.  
The test bed will be a scale model based on the ability to 
miniaturize the platforms, but by no means small enough to 
demonstrate truly engine-insertable rovers. 
 
The test will consist of several phases: entry, search, and 
coverage; damage mapping, locating, and convergence; and 
exit.  In all cases, the on-board constrained behavior logic 
will be simple, but the swarm as a whole will exhibit 
complex, dynamic behavior.  The entry, search, and 
coverage phase will test how the mobile platforms enter the 
arena, how they distribute themselves, and how thoroughly 
they check the parts they are supposed to check, i.e., are 
some parts missed.  The damage mapping, locating, and 
convergence phase will test the ability of the platforms to 
broadcast information that allows the visualization of the 
surface of the engine such that the position of any platform 
or damage location can be interpreted and the appropriate 
platforms can move to the correct spot for further inspection 
or maintenance.  Finally, the exit phase will test the ability 
of the rovers to move out of the engine efficiently.  How the 

 
Figure 5. Smallest NASA Glenn in-house design, as 
yet unbuilt, dimensions are in millimeters. 
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algorithms are developed and tested will depend 
significantly upon whether or not the platforms are tethered.  
Tethering adds multiple constraints to the problem: it limits 
the distance the platforms can move, it requires them to 
retrace their path to exit, and it requires each platform to be 
aware of the other platforms’ tethers to avoid tangling.  The 
thickness of the tether might add another constraint if the 
platforms must cross tethers in an area with limited 
headroom (Figure 7).  This will force the rovers to plan their 
initial paths such that other platforms have the ability to 
cross their tethers if necessary.  This will become critical in 
the convergence phase if the destination point is in a more 
constrained area such as the front of the turbine where 
damage is most likely to occur. 
 

 
 

 
 

6. SUMMARY 
 

There are many practical considerations that go into the 
development of a roving maintenance system for jet 
engines, and many obstacles that still need to be overcome, 
but the payoff is huge, both in cost and safety.  This project 
will determine the feasibility of delivering inspection and 
maintenance technology, through the development of path 
planning and coordinated group behavior algorithms, to the 
necessary locations within the engine and thereby 

potentially delay or eliminate some costly teardowns and 
rebuilds.  Advanced mobile sensor technology and 
associated processing, and possible in situ maintenance 
technique development are not part of this project but are 
being carried on in parallel.  A demonstration at the end of 
the project will address such issues as the coverage of the 
search area, the communication protocol and bandwidth 
requirements to broadcast pertinent information, and the 
ability for multiple, possibly tethered vehicles to converge 
to a point efficiently as they move between closely spaced 
obstacles.  
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